¿Nucleares?

Tras el accidente nuclear en la central Fukushima Dai-ichi de Japón, provocado por un terremoto de magnitud 9 en la escala de Richter y un maremoto con olas de hasta 32 metros, el mundo industrializado ha iniciado una reflexión acerca de la viabilidad de la energía nuclear de fisión. La prueba está en que Ángela Merkel, actual canciller alemana, ha cambiado su política energética tras el desastre, mientras el resto de países revisan sus plantas (nucleares, claro).

La energía de fisión es la fuente de energía implementada más productiva hasta la fecha. La energía eléctrica sería muchísimo más escasa (y cara) sin fisión de lo que es actualmente. Obviamente, reduciría la renta disponible de las familias, caería por ende el consumo, se reduciría por tanto la producción y los costes de las materias primas también ascenderían. Es decir, la riqueza de la sociedad se contraería notablemente. Por añadidura, la energía de fisión es compatible con evitar el cambio climático: no produce emisiones de efecto invernadero, especialmente de CO2, que tanto cabrea a los ecologistas.

Como cualquier innovación revolucionaria, la energía nuclear presenta un riesgo. Con riesgo cero, el progreso también es cero. ¿Qué elegimos de la disyuntiva? Para elegir una alternativa, debemos, ante todo, analizar los riesgos y los beneficios. La energía de fisión, a cambio de aportarnos mayor riqueza, nos reporta radiactividad, ya sea emitida directamente al medio ambiente o almacenada sólidamente en cementerios nucleares. Los cementerios nucleares representan el coste con menor peligro, pues la radiactividad generada es controlada y tratada por los seres humanos. Los residuos que el reactor genera se separan de los reutilizables (para volver a usarlos en otro reactor) de los inutilizables, que esos sí se almacenan; los reutilizables, se van haciendo cada vez más radiactivos hasta que se convierten en plutonio.

El problema de los residuos puede ser asumible en cierta medida, pues el volumen de todos los residuos nucleares del mundo no es mayor al de una habitación convencional (8 metros cuadrados).

El mayor riesgo, por tanto, es el de fuga radiactiva. Por eso, los ingenieros nucleares idean constantemente nuevas formas de impedir cualquier posibilidad –por remota que sea– de incidente nuclear. Se publicó un informe en el que se demostró que si un avión comercial Boeing-767 se estrellase contra la central, al contrario que el World Trade Center, la central nuclear permanecería sin problema alguno en la vasija y en el núcleo.

El problema estriba en la refrigeración, pues la actividad de la fisión se realiza a miles de grados y, sin agua en el interior que circulando enfríe el núcleo, éste puede llegar a fundirse, aumentando la presión y haciendo inevitable la emisión de algunos niveles de radiactividad. Por este motivo, se han ideado más de 5 sistemas de seguridad que permiten refrigerar en caso de que uno falle.

En primer lugar, tenemos dos publicaciones que tratan de calcular la probabilidad de que se produzca una fusión del núcleo en 40 años. La primera, la calcula para los reactores antigüos; la segunda publicación, realizada por General Electrics, calcula lo mismo para los reactores modernos. En la siguiente tabla, extraída de esa publicación, se resumen las conclusiones logradas:

En la parte encuadrada de rojo se encuentran las probabilidades de que se produzca una fusión de núcleo en un año, para cada tipo de reactor. El primero, BWR/4, es el mismo modelo al de la central de Fukushima. Como vemos, las probabilidades son muy bajas: si calculamos su media obtendremos una probabilidad de fusión de núcleo de 0,000280750% al año, por reactor.

Es decir, la probabilidad es prácticamente nula, pero está ahí; puede suceder. En este sentido, también debemos tener en cuenta el período de semidesintegración del radioisótopo que se encuentra en el reactor. Por ejemplo, el Yodo-131 se semidesintegra en 8,04 días, mientras que el plutonio tarda 24.110 años. También hay que decir que, a menor período, más radiactividad se emite, pues la radiación es liberada en poco tiempo, mientras que, en el plutonio por ejemplo, se libera poco a poco: en 24.110 años.

¿Es permisible entonces esta probabilidad? Situándonos en el peor de los escenarios posibles, esta es la probalidad de accidentes nucleares que se producirían antes de que el plutonio se semidesintegre:

Y, ahora, a partir de esta cifra podemos deducir la probabilidad de que ocurran distintos accidentes en el período de 24.110 años.

Y representando los anteriores datos:

O sea, que en 24.110 años, período en el que el plutonio está presente ha dado tiempo, a que se produzcan 5 accidentes nucleares. Y, por lo tanto, el plutonio se habrá extendido por muchos lugares de la tierra, dificultando la vida saludable.

Calibrando los beneficios y perjuicios de la energía de fisión podríamos afirmar que es altamente inviable si su tiempo de actividad es permanente, pues inevitablemente se producirán accidentes nucleares impregnando la atmósfera de radiación. Ahora bien, si la energía nuclear es transitoria, sus beneficios son muy superiores a los costes, ya que, a corto plazo, los residuos generados son mínimos y la probabilidad de que se produzca una fusión del núcleo es casi nula. Por ejemplo, si perdura unos 100 años en el mundo, la probabilidad de que ocurra una fusión del núcleo en un reactor moderno, utilizando la fórmula anterior, es de 2,23%; o sea, muy pequeña.

En definitiva, si optamos por el riesgo cero nuestra riqueza y bienestar disminuirá ostensiblemente. De modo que la decisión más racional –desde el punto de vista económico– es mantener la energía nuclear al mismo tiempo que se innovan otras fuentes más productivas y libres de riesgo, como la energía de fusión, cuya implementación se ha pronosticado para el 2035.

Es decir, es la energía del presente y hasta del futuro próximo, pero no es la energía de un futuro lejano. ¿Por qué la del presente? Porque hay riesgos prácticamente nulos (a pesar, de lo de Fukushima, y aunque este accidente todavía no haya ocasionado ningún problema para la salud) y fastuosos beneficios. ¿Por qué no la del futuro? Porque los riegos, obviamente, son crecientes. Y a nadie le gustaría mantener siempre una energía que genere algunos residuos. Siempre se quiere mejorar lo mejor.

No obstante, la predicción mediante probabilidades implica un riesgo. Por este motivo, la pretensión de este artículo no es demostrar cuántos accidentes se producirán, sino intuir que, a largo plazo, debido a los altos períodos de semidesintengración del plutonio, el planeta puede verse envuelto de este tipo de radiactividad y, concluyendo por tanto, que es la energía del presente o, como mucho, futuro próximo.

Anuncios

2 comentarios el “¿Nucleares?

  1. Nacho dice:

    Buen razonamiento Antonio, estoy contigo y me ha encantado (aplausos) XD

  2. EL IGNORANTE dice:

    La energía nuclear es la energía más limpia y resulta excelente para el crecimiento económico. Además su accidentabilidad (teniendo en cuenta que somos semidioses y nunca cometemos ni cometeremos errores de cálculo, como los pobres japoneses que mira que no han podido lidiar, a pesar de todas sus previsiones, con el cisne negro del tsunami) es muy baja. Para muestra cuatro botones:

    2011 – FUKUSHIMA – El desmantelamiento de los reactores de la central nuclear japonesa de Fukushima podría durar 30 años y costar más de 1 billón de yenes, unos 12.000 millones de dólares, según los analistas e ingenieros consultados por Bloomberg.

    1987 – GOAINIA – coste de Goiania (1987): En el año 2000, una sentencia de la octava corte federal del Estado de Goirás ordenó a la Comisión Nacional de Energía Nuclear de Brasil a compensar a las víctimas con 1,3 millones de reales (unos 560.000 €), así como garantizarles tratamiento médico y psicológico, incluyendo también a sus descendientes de segunda y tercera generación.5
    Dado que el accidente ocurrió antes de la promulgación de la Constitución Federal de 1988, y como el aparato de radioterapia había sido adquirido por el IGR y no por los médicos, estos no pudieron ser declarados responsables. Sin embargo, uno de los médicos debió pagar 100.000 reales (unos € 43.000) para sufragar el acondicionamiento de las instalaciones abandonadas. Por su parte, los chatarreros no fueron acusados en ningún momento.

    1979 – THREE MILE ISLAND – Coste del accidente de Three Mile Island: Three Mile Island ha sido objeto de interés para los estudiosos del factor humano como ejemplo de cómo grupos de gente reaccionan y toman decisiones bajo tensión. Existe un consenso general en que el accidente fue agravado por las decisiones incorrectas tomadas por los operadores abrumados con la información, mucha de ella inaplicable e inútil. Como resultado del TMI, se cambió el entrenamiento de operadores de reactores nucleares. Antes, el entrenamiento se centraba en diagnosticar el problema subyacente. Después, el entrenamiento se ha venido centrando en reaccionar a la emergencia pasando a través de una lista de comprobación estandarizada para asegurarse de que la base está recibiendo bastante líquido refrigerador.
    Limpiar el reactor después del accidente necesitó de un proyecto difícil que duró más de 10 años. Comenzó en agosto de 1979 y no terminó oficialmente hasta diciembre de 1993, con un coste total de cerca de 975 millones de dólares. Entre 1985 y 1990 se eliminaron del sitio casi 100 toneladas de combustible radiactivo. Se reinició TMI-1 en 1985.

    1986 CHERNOBYL – El accidente de Chernóbil ha costado a Ucrania 180.000 millones de dólares (123.000 millones de euros) hasta la fecha, según cálculos hechos públicos ayer por el primer ministro ucraniano, Nikolái Azárov.
    Aun sumando las 4.000 personas que se estima morirán por diversos tipos de cáncer en los próximos años a causa de Chernóbil, está claro que la percepción del riesgo de la radiactividad es muy superior al riesgo real. Todo lo contrario ocurre cuando se calcula el coste social y económico de un accidente nuclear. Incluso sabiendo que Ucrania destina el 6% de su PIB a paliar los efectos del accidente, ¿cómo se valora la pérdida de los 300.000 evacuados que ya nunca volverán a sus hogares, cultivar sus tierras o explotar la madera de sus bosques?

    En particular, la construcción del nuevo sarcófago sobre el averiado cuarto reactor de la planta supondrá un coste de 990 millones de euros.

    Que Uds. lo disfruten.

Esperamos tu comentario:

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s