¿Nucleares?

Tras el accidente nuclear en la central Fukushima Dai-ichi de Japón, provocado por un terremoto de magnitud 9 en la escala de Richter y un maremoto con olas de hasta 32 metros, el mundo industrializado ha iniciado una reflexión acerca de la viabilidad de la energía nuclear de fisión. La prueba está en que Ángela Merkel, actual canciller alemana, ha cambiado su política energética tras el desastre, mientras el resto de países revisan sus plantas (nucleares, claro).

La energía de fisión es la fuente de energía implementada más productiva hasta la fecha. La energía eléctrica sería muchísimo más escasa (y cara) sin fisión de lo que es actualmente. Obviamente, reduciría la renta disponible de las familias, caería por ende el consumo, se reduciría por tanto la producción y los costes de las materias primas también ascenderían. Es decir, la riqueza de la sociedad se contraería notablemente. Por añadidura, la energía de fisión es compatible con evitar el cambio climático: no produce emisiones de efecto invernadero, especialmente de CO2, que tanto cabrea a los ecologistas.

Como cualquier innovación revolucionaria, la energía nuclear presenta un riesgo. Con riesgo cero, el progreso también es cero. ¿Qué elegimos de la disyuntiva? Para elegir una alternativa, debemos, ante todo, analizar los riesgos y los beneficios. La energía de fisión, a cambio de aportarnos mayor riqueza, nos reporta radiactividad, ya sea emitida directamente al medio ambiente o almacenada sólidamente en cementerios nucleares. Los cementerios nucleares representan el coste con menor peligro, pues la radiactividad generada es controlada y tratada por los seres humanos. Los residuos que el reactor genera se separan de los reutilizables (para volver a usarlos en otro reactor) de los inutilizables, que esos sí se almacenan; los reutilizables, se van haciendo cada vez más radiactivos hasta que se convierten en plutonio.

El problema de los residuos puede ser asumible en cierta medida, pues el volumen de todos los residuos nucleares del mundo no es mayor al de una habitación convencional (8 metros cuadrados).

El mayor riesgo, por tanto, es el de fuga radiactiva. Por eso, los ingenieros nucleares idean constantemente nuevas formas de impedir cualquier posibilidad –por remota que sea– de incidente nuclear. Se publicó un informe en el que se demostró que si un avión comercial Boeing-767 se estrellase contra la central, al contrario que el World Trade Center, la central nuclear permanecería sin problema alguno en la vasija y en el núcleo.

El problema estriba en la refrigeración, pues la actividad de la fisión se realiza a miles de grados y, sin agua en el interior que circulando enfríe el núcleo, éste puede llegar a fundirse, aumentando la presión y haciendo inevitable la emisión de algunos niveles de radiactividad. Por este motivo, se han ideado más de 5 sistemas de seguridad que permiten refrigerar en caso de que uno falle.

En primer lugar, tenemos dos publicaciones que tratan de calcular la probabilidad de que se produzca una fusión del núcleo en 40 años. La primera, la calcula para los reactores antigüos; la segunda publicación, realizada por General Electrics, calcula lo mismo para los reactores modernos. En la siguiente tabla, extraída de esa publicación, se resumen las conclusiones logradas:

En la parte encuadrada de rojo se encuentran las probabilidades de que se produzca una fusión de núcleo en un año, para cada tipo de reactor. El primero, BWR/4, es el mismo modelo al de la central de Fukushima. Como vemos, las probabilidades son muy bajas: si calculamos su media obtendremos una probabilidad de fusión de núcleo de 0,000280750% al año, por reactor.

Es decir, la probabilidad es prácticamente nula, pero está ahí; puede suceder. En este sentido, también debemos tener en cuenta el período de semidesintegración del radioisótopo que se encuentra en el reactor. Por ejemplo, el Yodo-131 se semidesintegra en 8,04 días, mientras que el plutonio tarda 24.110 años. También hay que decir que, a menor período, más radiactividad se emite, pues la radiación es liberada en poco tiempo, mientras que, en el plutonio por ejemplo, se libera poco a poco: en 24.110 años.

¿Es permisible entonces esta probabilidad? Situándonos en el peor de los escenarios posibles, esta es la probalidad de accidentes nucleares que se producirían antes de que el plutonio se semidesintegre:

Y, ahora, a partir de esta cifra podemos deducir la probabilidad de que ocurran distintos accidentes en el período de 24.110 años.

Y representando los anteriores datos:

O sea, que en 24.110 años, período en el que el plutonio está presente ha dado tiempo, a que se produzcan 5 accidentes nucleares. Y, por lo tanto, el plutonio se habrá extendido por muchos lugares de la tierra, dificultando la vida saludable.

Calibrando los beneficios y perjuicios de la energía de fisión podríamos afirmar que es altamente inviable si su tiempo de actividad es permanente, pues inevitablemente se producirán accidentes nucleares impregnando la atmósfera de radiación. Ahora bien, si la energía nuclear es transitoria, sus beneficios son muy superiores a los costes, ya que, a corto plazo, los residuos generados son mínimos y la probabilidad de que se produzca una fusión del núcleo es casi nula. Por ejemplo, si perdura unos 100 años en el mundo, la probabilidad de que ocurra una fusión del núcleo en un reactor moderno, utilizando la fórmula anterior, es de 2,23%; o sea, muy pequeña.

En definitiva, si optamos por el riesgo cero nuestra riqueza y bienestar disminuirá ostensiblemente. De modo que la decisión más racional –desde el punto de vista económico– es mantener la energía nuclear al mismo tiempo que se innovan otras fuentes más productivas y libres de riesgo, como la energía de fusión, cuya implementación se ha pronosticado para el 2035.

Es decir, es la energía del presente y hasta del futuro próximo, pero no es la energía de un futuro lejano. ¿Por qué la del presente? Porque hay riesgos prácticamente nulos (a pesar, de lo de Fukushima, y aunque este accidente todavía no haya ocasionado ningún problema para la salud) y fastuosos beneficios. ¿Por qué no la del futuro? Porque los riegos, obviamente, son crecientes. Y a nadie le gustaría mantener siempre una energía que genere algunos residuos. Siempre se quiere mejorar lo mejor.

No obstante, la predicción mediante probabilidades implica un riesgo. Por este motivo, la pretensión de este artículo no es demostrar cuántos accidentes se producirán, sino intuir que, a largo plazo, debido a los altos períodos de semidesintengración del plutonio, el planeta puede verse envuelto de este tipo de radiactividad y, concluyendo por tanto, que es la energía del presente o, como mucho, futuro próximo.

¿Quién cambia el clima?

En las últimas décadas se ha iniciado un controvertido debate acerca del cambio climático. No obstante, el clima terrestre siempre está cambiando. Así pues, el centro del debate no está en el cambio climático a secas, sino en el origen del mismo.

Para muchos, el factor preponderante en el calentamiento global es antropogénico, provocado por el hombre. Para otros tantos, el cambio climático preconizado por Al Gore, se trata de un nuevo tipo de religión, el ecoalarmismo. Ninguna afirmación ha logrado demostrarse fehacientemente. Es razonable. El clima –como todos sabemos- es el sistema multifactorial por antonomasia. Por ello, es imposible que el cambio climático se deba a una única causa. De hecho, en el clima terrestre –y simplificando demasiado- no sólo influyen los gases de efecto invernadero, sino también el nivel de luminosidad del Sol y el número de manchas solares.

Etapas geológicas

La paleoclimatología estudia restos de hielo profundo, con el fin de conocer cómo era el clima en otras épocas. Los datos se extraen principalmente de muestras de hielo en la Antártida y Groenlandia. A más profundidad en el hielo, más se retrocede en el tiempo.

El estudio de los últimos 400.000 años ha desvelado que el clima terrestre es cíclico, con épocas más calurosas y épocas de glaciación. Esta ciclitud está influida por los ciclos solares: a mayor número de manchas solares, más aumenta la temperatura terrestre y viceversa. Por ejemplo, en la edad media las temperaturas eran más altas que las de ahora; y entre el S.XV y el S.XIX acaeció la Pequeña Edad de Hielo.

Evidentemente esta relación manchas solares-clima terreste se produce a largo plazo, pues si consideramos un lapso de tiempo muy pequeño cualquier pequeña variación puede alterar el clima. De hecho, la cultura maya ya fue capaz de dividir su calendario en función de los ciclos solares.

Derretimiento de los polos

El hielo, estacionalmente, se derrite y recongela. Pero el permagel o hielo que se mantiene congelado permanentemente sí que ha comenzado a derretirse. Este fenómeno es curioso y tiene las siguientes características:

En las glaciaciones, aumenta el hielo y disminuyen las temperaturas; por contra, cuando se derritan los polos, el planeta se calienta. Existen razones para pensar que, una vez que se inicia el congelamiento o derretimiento, el proceso es irreversible. Veámos por qué.

La nieve es la superficie que más rayos solares refleja, por eso, al esquiar, la protección solar debe ser máxima. Cuando los polos se derriten, se reflejan menos rayos solares, es decir se reduce la capacidad de reflexión (esta capacidad se denomina albedo). Podríamos decir que el albedo de la nieve es casi del 90%, mientras que el del agua es cercano al 7%. Por consiguiente, cuando se reduce el hielo, el albedo se irá reduciendo y, a su vez, esto hará que el hielo se derrita aún más. Es decir, el derretimiento de los polos es un feedback conocido como hielo-albedo. Al derretirse el hielo, éste volverá a derretirse aún más, por eso el proceso es prácticamente irreversible.

Se ha aducido frecuentemente que, al derretirse los polos, el nivel del mar aumentará. De hecho, hay pruebas empíricas que lo demuestran. Pero el argumento no es sencillo. Primero: más del 95% del iceberg está bajo el agua. Segundo: la nieve ocupa más espacio que el agua líquida, ya que en la nieve contiene moléculas de aire que hacen ensanchar el espacio. Por lo que, a priori, el derretimiento no parece ser tan catastrófico. Pueden comprobarlo con un cubito de hielo y un vaso. No obstante, hay muchos glaciares que están encima de tierra por lo que, al descongelarse, toda el agua pasará al mar. Además, aumentará la temperatura, lo que provocará que el agua se expanda. También pueden comprobarlo: cuando calientan una olla de agua ésta ocupa más volumen que fría.

Otro problema que provoca la descongelación es que, bajo los polos, hay restos biológicos en descomposición. Esto significa que si el hielo que los aisla desaparece, emitirán grandes cantidades de CO2 y metano, gases de efecto invernadero. Concretamente, se ha calculado que hay 450 millones de toneladas métricas de carbono bajo los polos. Otro feedback. Si se descongelan los polos, el efecto invernadero se acentúa lo que provoca que se descongelen aún más, liberando todavía más gases invernadero.

El efecto invernadero

Como consecuencia de lo anterior, podemos aducir de que el propio descongelamiento de los polos puede acrecentar exponencialmente el efecto invernadero. Los restos biológicos descompuestos, en la intemperie, comenzaran a liberar metano y CO2 en cantidades desorbitadas, éstos gases llegarán a la atmósfera y retendrán mayor cantidad de rayos reflejados por la superficie, aumentando la temperatura media del planeta. Y, como habrán concluído, esto ocasionará aún mas deshielo y, a su vez, aún más gases invernadero hasta que los polos se derritan totalmente.

Los gases de efecto invernadero (metano, CO2, óxido nitroso y vapor de agua) representan un 0,44 % de la composición total de la atmósfera y regulan la temperatura de la tierra para que la vida sea factible. El vapor de agua es responsable del efecto invernadero en un 93%, el CO2 en un 5%, el metano en un 1% y el óxido nitroso en un 1%, atendiendo al porcentaje que representan y el grado de incidencia. Sin embargo, la vida media del metano es de 10 años, mientras que la del CO2 es de 200 años.

De todos ellos, sólo son de origen antropogénico en un fracción el CO2, el N2O y el metano, que representan el 7% del efecto invernadero. Es decir, la especie humana tiene, a lo sumo, menos del 7% de influencia en el calentamiento global. Pero, como sabemos, los glaciares también emiten enormes cantidades tanto de metano como de CO2. Además, en el momento de deshielo, en la sublimación, también se emiten grandes cantidades de vapor de agua. Por lo que podemos concluir que sólo el derretimiento de los glaciares origina más calentamiento global que el propio ser humano. Y resulta comprensible: si la actividad solar se ha incrementado, el clima de la tierra se prepara para el calentamiento (feedbaks albedo-hielo y derretimimiento-invernadero), independientemente de lo que el hombre pueda hacer. Si bien es verdad, que la especie humana puede o acompañar el calentamiento o hacer que se retrase unos años, ya sea plantando más masa forestal que absorba el CO2 o reduciendo las emisiones antropogénicas, pero todo apunta a que el cambio climático es ineluctable.